Transition of R factor NR1 in Proteus mirabilis: molecular structure and replication of NR1 deoxyribonucleic acid.

AUTOR(ES)
RESUMO

The structure of R factor NR1 DNA in Proteus mirabilis has been studied by using the techniques of CsCl density gradient centrifugation, sedimentation in neutral and alkaline sucrose gradients, and electron microscopy. It has been shown that the nontransitioned form of NR1 DNA isolated from P. mirabilis cultured in drug-free medium is a37-mum circular deoxyribonucleic acid (DNA) with a density of 1.712 g/ml in a neutral CsCl gradient. This circular molecule is a composite structure consisting of a 29-mum resistance transfer factor containing the tetracycline-resistance genes (RTF-TC) and an 8-mum r-determinants component conferring resistance to chloramphenicol (CM), streptomycin/spectinomycin, and the sulfonamides. There are one to two copies of NR1 per chromosome equivalent of DNA in exponential-phase cells cultured in Penassay broth. After growth of PM15/NR1 in medium containing 100 mug of CM per ml, the density of the NR1 DNA increased from 1.712 g/ml to approximately 1.718 g/ml and the proportion of NR1 DNA relative to the chromosome is amplified about 10-fold. The changes in R factor DNA structure which accompany this phenomenon (termed the transition) have been studied. DNA density profiles of the transitioned NR1 DNA consist of a 1.718 g/ml band which is skewed toward the less dense side. The transitioned NR1 DNA consists of molecules containing the RTF-TC element attached to multiple copies of r-determinants DNA (poly-r-determinant R factors) and multimeric and monomeric autonomous r-determinants structures. Poly-r-determinant R factors have a density intermediate between the basic composite structure (1.712 g/ml) and r-determinants DNA (1.718 g/ml). These species presumably account for the skewing of the 1.718-g/ml DNA band toward the less dense side. When transitioned cells are subsequently cultured in drug-free medium, poly-r-determinant R factors and autonomous poly-r-determinants undergo dissociation to form smaller structures containing fewer copies of r-determinants. This process continues until, after prolonged growth in drug-free medium the NR1 DNA returns to the nontransitioned state which consists of an RTF-TC and a single copy of r-determinants.

Documentos Relacionados