Transient paralysis by heat shock of hormonal regulation of gene expression.

AUTOR(ES)
RESUMO

We have investigated the effect of heat shock on primary cultures of male and female Xenopus laevis hepatocytes as a function of estrogen-induced vitellogenin gene expression. Coincident with the induction of heat-shock protein (hsp) synthesis, thermal stress abolishes the estrogen activated transcription and accumulation of vitellogenin mRNA, at the same time causing the destabilization of vitellogenin mRNA accumulated by prior treatment with the hormone. Exposure of the cells to estrogen before heat shock allows an immediate resumption of vitellogenin gene transcription on return to 26 degrees C. Heat shock applied to cells from hormonally naive male Xenopus extends the lag period preceding vitellogenin gene transcription upon return to normal temperatures. This transient and reversible paralysis of estrogen responsiveness is paralleled by reversible changes in the amount of nuclear estrogen receptor in the hepatocytes. Heat shock therefore offers a novel approach in the manipulation and analysis of the early stages of steroid hormonal regulation of gene expression.

Documentos Relacionados