**Transições de fase hádron-quark em estrelas de nêutrons**

##### AUTOR(ES)

Rosana de Oliveira Gomes

##### FONTE

IBICT - Instituto Brasileiro de Informação em Ciência e Tecnologia

##### DATA DE PUBLICAÇÃO

2011

##### RESUMO

Recent advances on the field of high energy physics have enabled the study of matter under extreme conditions and, in this context, new states of matter are being discovered and speculated upon. Among these hypothetical states of matter is the one of deconfined quarks in high densities and/or temperatures. An environment with extreme densities and low temperature is found in the interior of neutron stars, making them laboratories for the study of nuclear matter. The aim of this work is to study the quark deconfinement phase transition in the interior of non-rotating neutron stars. We begin by introducing quantum hadrodynamics (QHD) models that describe nuclear matter in a relativistic many-body formalism, in which the exchange of scalar and vector mesons is responsible for the interaction among baryons. In this work the hadronic matter is described by the Non-Linear a ¿ w Model and by the Adjustable Model, which are extentions of the Walecka Model. The former considers a minimal coupling between baryons and mesons, while the latter considers an adjustable derivative coupling. In both models, the parameters are tuned to reproduce the properties of nuclear matter at saturation density. In particular, when considering the presence of hyperons at higher densities, we need to use theoretical models to describe their coupling with the mesons, since hyperons do not populate nuclear matter at saturation. The quantum chromodynamics (QCD) phase diagram presents several new phases when we consider extreme temperatures and/or densities. In particular, we are interested on the transition that takes place in low temperature and high densities, in which the quarks suffer deconfinement. This kind of quark matter is usually described in the literature by means of the MIT bag model, in which the quarks are considered to be asymptotically free in a space region denominated bag. The stability of the bag is assured by means of a parameter, the bag constant, whose values are related to the energy density of quark matter. Since we consider two distinct phases, each formed of different kinds of particles, this multicomponent system is composed of two different independent phases. We assume the phase transition is first-order and follows the Gibbs criteria, and therefore presents mixed phase. We consider a global electric and baryonic charge conservation, making the equation of state to grow continuously through the mixed phase and making it possible to describe a star. We investigate the influence of different choices of parameters, hyperon coupling schemes and QHD models on the phase transition. The influence of these uncertainties are studied in the stiffness of the equation of state. the size of the mixed phase and in the beginning and ending of the phase transition. Having determined the equation of state for the matter in the interior of the star, we obtain the star s static properties, i.e., the mass-radius relation, by use of the Tolman- Oppenheimer-Volkoff (TOV) equations. Using the equation of state for hadronic matter populated by hyperons we obtain the properties of hyperon stars and, also considering the equation of state for mixed and quark matter, we model a hybrid star, with a core made of free quarks. Finally, we point out the theoretical uncertainties, inherent to the parameters of the QHD models and of the MIT model, and also to the different hyperon scheme couplings, on the hyperon and hybrid stars properties. In addition, open topics related to the context of phase transitions on compact stars, and new perspectives that may lead to more realistic results, are discussed.

##### ASSUNTO(S)

astrofisica estrelas de neutrons transicoes de fase hadrons quarks cromodinamica quantica modelo de sacola equacoes de estado