Transcription on lampbrush chromosome loops in the absence of U2 snRNA.


The five small nuclear RNAs (snRNAs) involved in splicing occur on the loops of amphibian lampbrush chromosomes and in hundreds to thousands of extrachromosomal granules called B snurposomes. To assess the role of these snRNAs during transcription and to explore possible relationships between the loops and B snurposomes, we injected single-stranded antisense oligodeoxynucleotides (oligos) against U1 and U2 snRNA into toad and newt oocytes. As shown before, antisense U1 and U2 oligos caused truncation of U1 and complete destruction of U2 snRNAs, respectively. However, injection of any oligo, regardless of sequence, brought on dramatic cytological changes, including shortening of the chromosomes and retraction of the lateral loops, with concomitant shutdown of polymerase II transcription, as well as disappearance of some or all of the B snurposomes. When injected oocytes were incubated for 12 h or longer in physiological saline, these changes were reversible; that is, the chromosomes lengthened, transcription (detected by 3H-UTP incorporation) resumed on newly extended lateral loops, and B snurposomes reappeared. In situ hybridization showed that loops and B snurposomes had negligible amounts of U2 snRNA after recovery from injection of the anti-U2 oligo, whereas these structures had normal levels of U2 snRNA after recovery from a control oligo. Thus, the morphological integrity of B snurposomes and lampbrush chromosome loops is not dependent on the presence of U2 snRNA. Because transcription occurs in the absence of U2 snRNA, we conclude that splicing is not required for transcription on lampbrush chromosome loops.

Documentos Relacionados