Tomato SP-Interacting Proteins Define a Conserved Signaling System That Regulates Shoot Architecture and Flowering

AUTOR(ES)
FONTE

American Society of Plant Biologists

RESUMO

Divergent architecture of shoot models in flowering plants reflects the pattern of production of vegetative and reproductive organs from the apical meristem. The SELF-PRUNING (SP) gene of tomato is a member of a novel CETS family of regulatory genes (CEN, TFL1, and FT) that controls this process. We have identified and describe here several proteins that interact with SP (SIPs) and with its homologs from other species: a NIMA-like kinase (SPAK), a bZIP factor, a novel 10-kD protein, and 14-3-3 isoforms. SPAK, by analogy with Raf1, has two potential binding sites for 14-3-3 proteins, one of which is shared with SP. Surprisingly, overexpression of 14-3-3 proteins partially ameliorates the effect of the sp mutation. Analysis of the binding potential of chosen mutant SP variants, in relation to conformational features known to be conserved in this new family of regulatory proteins, suggests that associations with other proteins are required for the biological function of SP and that ligand binding and protein–protein association domains of SP may be separated. We suggest that CETS genes encode a family of modulator proteins with the potential to interact with a variety of signaling proteins in a manner analogous to that of 14-3-3 proteins.

Documentos Relacionados