Tin and zinc oxides semiconductor devices / Dispositivos semicondutores a partir de óxidos de estanho e zinco

AUTOR(ES)
DATA DE PUBLICAÇÃO

2009

RESUMO

This work presents the study and development of semiconductor devices base on tin and zinc oxides. The first device is related to the development of pH sensors based on field effect, while the second device uses surface acoustic waves for the transport of carriers related to a single photon detector device. Initially, the semiconductors were used as hydrogen ions sensing membranes. For that aim extended gate field effect transistors (EGFET) were developed. Their working principle is similar to the ion sensitive field effect transistor (ISFET). Through Pechini and sol-gel SnO2 thin films were obtained. The EGFET response to H+ ions was not optimal due to the presence of pores. Using Pechini, a response of 33mV/pH was obtained for the EGFET membrane calcinated at 400o C. The use of ZnO as sensing membrane was also investigated, and the best response was a sensibility of 38mV/pH) for a film heated up to 150o C. In addition to the EGFET structure, a new approach to a single photon detection is presented. This uses the combination of surface acoustic waves with a single electron transistor. Two prototypes were developed using a multi-layered structure optimized for photon absorption. Carriers are collected using a p-i-n structure. Inter-digital-transducers are used for surface acoustinc wave generation. Metallic guides are used to control the carriers during acoustic tranport. Carriers were efficiently transported over a length of 100 mm with a loss of 12 % for the best configuration. Under this optimized conditions, the efficiency of the device is 75%.

ASSUNTO(S)

acoustic transport transporte acústico de portadores sno2 zno ondas acústicas sno2 acoustic waves detector de um único fóton. single photon detector. zno

Documentos Relacionados