Theoretical investigations on valence vibronic transitions

AUTOR(ES)
FONTE

Brazilian Journal of Physics

DATA DE PUBLICAÇÃO

2005-12

RESUMO

This article reviews previously employed methods to study several valence electronic transitions, optically forbidden or not, enhancing intensity through vibronic coupling. Electronic transition dipole moments were calculated using several ab initio methods including electron correlation. In this method the square of the electronic transition dipole moments are directly calculated along the normal coordinates of vibration and then expanded with a polynomial function. Afterwards, analytical vibrational integration using harmonic wave functions, of the square of the transition moments function, allows us to obtain partial (i.e. for each vibrational mode) and total optical oscillator strengths (OOS), for the vibronic transition of interest. We illustrate the accuracy of the method through valence transitions of benzene (C6H6), formaldehyde (H2CO), acetone (C3H6O) and formic acid (HCOOH).

Documentos Relacionados