The use of computational chemistry in the studies of chemical processes involved in electrospray ionization / A utilização da química computacional em processos químicos relacionados à ionização por electrospray

AUTOR(ES)
DATA DE PUBLICAÇÃO

2009

RESUMO

In recent decades, the development of atmospheric ionization techniques improved mass spectrometry, principally for characterization and structural elucidation of high-molecular weight compounds. The development of spray ionization was responsible for the spread of applications and studies of mass spectrometry, where the electrospray ionization is the most versatile among the ionization sources. The electrolytic character of electrospray source allows obtaining ions by three different chemical processes: i) acid-base; ii) redox and, iii) metal complexation. These processes will occur through several factors which can be related to the ionization source and thermochemical parameters of analyte. The notable progress of experimental analyses, computational data and the integration between several areas of chemical application have stimulated the use of theoretical chemistry at gas-phase studies. Computational chemistry can furnish a quantitative understanding of the structure and energy of possible ions during the ionization process. For this reason, the synergism between the concepts from quantum chemistry and gas-phase chemistry can help mass spectrometry analysis. The main purpose of this thesis was the application of several quantum mechanical models to obtain thermochemical parameters which can be related to mass spectrometry phenomena. Firstly, the comparison between ab initio, composite model and DFT methods were employed to obtain the thermochemical parameters to -butyrolactone e 2-pyrrolidinona, in order to obtain high performance of thermochemical parameters. The composite G2, G2(MP2), CBS-Q and, the B3LYP, B3P86, B98, PW91PW91 and MP2 methods were tested. The calculated values were compared to experimental values reported in the literature. The best results for enthalpies of formation were obtained when B3LYP/6-31+G(d,p) model was employed. The proton affinity and gas-phase basicity were better described by using of B3LYP and G2(MP2). Secondly, the studies with quinones were performed, where the 1,4-benzoquinone, 1,4-naphthoquinone and its derivatives (2-acylamino-1,4-naphthoquinone; 2-propyonilamino-1,4-naphthoquinone; 2-butyrilamino-1,4-naphthoquinone; 2-benzoylamino-1,4-naphthoquinone; 2-succynilamino-1,4-naphtoquinone and, lapachol) were studied. A search for a theoretical model was made to compare the geometries, proton affinity, gas-phase basicity, ionization energy and electron affinity to 1,4-benzoquinone with those reported in the literature. The most accurate results were obtained by using of B3LYP/6-31+G(d,p). Thus, this model was applied in all studies with 1,4-naphthoquinone derivatives. The influence of substituent groups on electronic structure of protonated, deprotonated, reduced, oxidized and cationized molecules were studied by energetic, geometrics, electronics and topological analyses. The development of these studies and the determination of the thermochemical parameters and wave function analysis was achieved by means of Natural Bond Orbitals, Natural Steric Analysis, Natural Resonance Theory and Atoms in Molecules The electrospray ionization and gas-phase collision-induced dissociation were made for the 1,4-naphtoquinone derivatives by analyzing their protonated, deprotonated species, the radicalar and sodiated ones. The main fragmentation pathways were elucidated on the basis of the energy surface by using Gibbs energies and enthalpies.

ASSUNTO(S)

dissociação em espectrometria de massas computational thermochemistry termoquímica computacional gas-phase dissoci mass spectrometry isodesmic reactions reações isodésmicas

Documentos Relacionados