The Tonoplast H+-ATPase of Acer pseudoplatanus Is a Vacuolar-Type ATPase That Operates with a Phosphoenzyme Intermediate.


The tonoplast H+-ATPase of Acer pseudoplatanus has been purified from isolated vacuoles. After solubilization, the purification procedure included size-exclusion and ion-exchange chromatography. The H+-ATPase consists of at least eight subunits, of 95, 66, 56, 54, 40, 38, 31, and 16 kD, that did not cross-react with polyclonal antibodies raised to the plasmalemma ATPase of Arabidopsis thaliana. The 66-kD polypeptide cross-reacted with monoclonal antibodies raised to the 70-kD subunit of the vacuolar H+-ATPase of oat roots. The functional molecular size of the tonoplast H+-ATPase, analyzed in situ by radiation inactivation, was found to be around 400 kD. The 66-kD subunit of the tonoplast H+-ATPase was rapidly phosphorylated by [[gamma]-32P]ATP in vitro. The complete loss of radio-activity in the 66-kD subunit after a short pulse-chase experiment with unlabeled ATP reflected a rapid turnover, which characterizes a phosphorylated intermediate. Phosphoenzyme formed from ATP is an acylphosphate-type compound as shown by its sensitivity to hydroxylamine and alkaline pH. These results lead us to suggest that the tonoplast H+-ATPase of A. pseudoplatanus is a vacuolar-type ATPase that could operate with a plasmalemma-type ATPase catalytic mechanism.

Documentos Relacionados