The Maintenance of Genetic Variability in Two-Locus Models of Stabilizing Selection

AUTOR(ES)
RESUMO

The maintenance of genetic variability at two diallelic loci under stabilizing selection is investigated. Generations are discrete and nonoverlapping; mating is random; mutation and random genetic drift are absent; selection operates only through viability differences. The determination of the genotypic values is purely additive. The fitness function has its optimum at the value of the double heterozygote and decreases monotonically and symmetrically from its optimum, but is otherwise arbitrary. The resulting fitness scheme is identical to the symmetric viability model. Linkage disequilibrium is neglected, but the results are otherwise exact. Explicit formulas are found for all the equilibria, and explicit conditions are derived for their existence and stability. A complete classification of the six possible global convergence patterns is presented. In addition to the symmetric equilibrium (with gene frequency 1/2 at both loci), a pair of unsymmetric equilibria may exist; the latter are usually, but not always, unstable. If the ratio of the effect of the major locus to that of the minor one exceeds a critical value, both loci will be stably polymorphic. If selection is weak at the minor locus, the more rapidly the fitness function decreases near the optimum, the lower is this critical value; for rapidly decreasing fitness functions, the critical value is close to one. If the fitness function is smooth at the optimum, then a stable polymorphism exists at both loci only if selection is strong at the major locus.

Documentos Relacionados