The incidence of initial doublets in the discharges of motoneurones of two different inspiratory muscles in the cat.

AUTOR(ES)
RESUMO

1. Trains of action potentials in motoneurones frequently commence with an initial doublet; i.e. a uniquely short interspike interval. Previous authors have speculated on the functional importance of initial doublets. Here we test the hypotheses that these doublets are associated with particular classes of motoneurones or particular physiological conditions. 2. Discharges of inspiratory motoneurones were recorded extracellularly in the thoracic ventral horn of anaesthetized, paralysed cats. Seventy units (35 each with axons in the internal and external intercostal nerves) were classified on the basis of their maximum firing rates, start times in the respiratory cycle and axonal destination. 3. Initial doublets were defined by an interspike interval < 14 ms. Of seventeen units firing initial doublets, fifteen had axons in the external intercostal nerve and two had axons in the internal intercostal nerve. Neither maximum firing rate nor start time during the respiratory cycle predicted the occurrence of doublets. 4. The chemical drive to breathe was manipulated by altering the CO2 content of the inspired gas or by briefly stopping the respiratory pump. Varying the chemical drive to breathe had no consistent effect on the occurrence of initial doublets. 5. These results support the view that initial doublets are part of the normal pattern of discharge of motoneurones. However, because the incidence of doublets does not consistently support previous functional hypotheses, we argue that the occurrence of doublets may not necessarily be dictated by the CNS, but in some circumstances it is an epiphenomenon dependent on the state of the motoneurone, in particular on the statistical properties of its synaptic inputs.

Documentos Relacionados