The Genetical Response to Natural Selection by Varied Environments. IV. Gametic Disequilibrium in Spatially Varied Environments

AUTOR(ES)
RESUMO

Gametic disequilibria between allozyme loci were related to spatial variation of the environment in caged populations of Drosophila melanogaster . Two experiments, one with flies collected at "Chateau Tahbilk," South Australia, and the other with flies from "Groningen," The Netherlands, were sampled at generations 16 and 32. Spatial variation of the environment was stimulated using three food media. Eight polymorphic allozyme loci were used to estimate gametic disequilibria from digenic combinations of allotypes. All populations were duplicated within an environment and maintained at about 2500 adults. Standardized gametic disequilibria were compared by a weighted least squares analysis of the z-transformed statistical correlation of allele frequencies. Gametic disequilibria were strongly dependent upon food niche and food-niche interactions. The effects also varied with sampling time and were similar in duplicate populations. Gametic disequilibria were most often detected in the "Groningen"-derived populations and their strength was not strongly associated with recombination fraction. Many of the disequilibria concerned unlinked loci. The strength of selection was probably considerable and populations were evolving genetic architectures which reflected niche selection by the different foods without marked genetic isolation between foods; gene frequencies did not vary between niches within a population cage.

Documentos Relacionados