The effects of low calcium on the voltage-dependent conductances involved in tuning of turtle hair cells.

AUTOR(ES)
RESUMO

1. The voltage-dependent conductances of turtle cochlear hair cells of known resonant frequency were characterized by tight-seal, whole-cell recording during superfusion with solutions containing normal (2.8 mM) and reduced (0.1-10 microM) Ca2+. 2. In 1 microM Ca2+, the current flowing through the voltage-dependent Ca2+ channels was increased roughly fivefold and had a reversal potential near 0 mV. This observation may be explained by the Ca2+ channels becoming non-selectively permeable to monovalent cations in low-Ca2+ solutions. Lowering the Ca2+ further to 0.1 microM produced little increase in the current. 3. The size of the non-selective current increased systematically with the resonant frequency of the hair cell over the range from 10 to 320 Hz. This suggests that hair cells tuned to higher frequencies contain more voltage-dependent Ca2+ channels. 4. There was a good correlation between the amplitudes of the non-selective current and the K+ current which underlies electrical tuning of these hair cells. The amplitude of the K+ current also increased systematically with resonant frequency. 5. In cells with resonant frequencies between 120 and 320 Hz, the K+ current was completely abolished in 1 microM Ca2+, consistent with prior evidence that this current flows through Ca2+ activated K+ channels. In a majority of cells tuned between 50 and 120 Hz, the K+ current was incompletely blocked in 1 microM Ca2+, but was eliminated in 0.1 microM Ca2+. In all hair cells the K+ current was abolished by 25 mM tetraethylammonium chloride. 6. In cells tuned to 10-20 Hz, the K+ current was not substantially diminished even in 0.1 microM Ca2+, which argues that it may not be Ca2+ activated. 7. In cells tuned to frequencies above 100 Hz, the K+ current could still be evoked by depolarization during superfusion with 10 microM Ca2+. However, its half-activation voltage was shifted to more depolarized levels and its maximum amplitude was systematically reduced with increasing resonant frequency. 8. These observations are consistent with the notion that in cells tuned to more than 50 Hz, there is a fixed ratio of the number of voltage-dependent Ca2+ channels to Ca(2+)-activated K+ channels, the numbers of each increasing in proportion to resonant frequency. The results also provide indirect evidence that the Ca(2+)-activated K+ channels in cells tuned to higher frequencies may be less sensitive to intracellular Ca2+.

Documentos Relacionados