The development of mitochondrial medicine.

AUTOR(ES)
RESUMO

Primary defects in mitochondrial function are implicated in over 100 diseases, and the list continues to grow. Yet the first mitochondrial defect--a myopathy--was demonstrated only 35 years ago. The field's dramatic expansion reflects growth of knowledge in three areas: (i) characterization of mitochondrial structure and function, (ii) elucidation of the steps involved in mitochondrial biosynthesis, and (iii) discovery of specific mitochondrial DNA. Many mitochondrial diseases are accompanied by mutations in this DNA. Inheritance is by maternal transmission. The metabolic defects encompass the electron transport complexes, intermediates of the tricarboxylic acid cycle, and substrate transport. The clinical manifestations are protean, most often involving skeletal muscle and the central nervous system. In addition to being a primary cause of disease, mitochondrial DNA mutations and impaired oxidation have now been found to occur as secondary phenomena in aging as well as in age-related degenerative diseases such as Parkinson, Alzheimer, and Huntington diseases, amyotrophic lateral sclerosis and cardiomyopathies, atherosclerosis, and diabetes mellitus. Manifestations of both the primary and secondary mitochondrial diseases are thought to result from the production of oxygen free radicals. With increased understanding of the mechanisms underlying the mitochondrial dysfunctions has come the beginnings of therapeutic strategies, based mostly on the administration of antioxidants, replacement of cofactors, and provision of nutrients. At the present accelerating pace of development of what may be called mitochondrial medicine, much more is likely to be achieved within the next few years.

Documentos Relacionados