Temperature-Sensitive Yeast Mutants Defective in Meiotic Recombination and Replication

AUTOR(ES)
RESUMO

A system is described for isolating temperature-sensitive mutants of Saccharomyces cerevisiae with defects in early meiotic events. We used an otherwise haploid strain disomic (n+1) for chromosome III, and heteroallelic at the leucine-2 locus. Meiotic development was initiated by exposure of the strain to acetate sporulation medium, and monitored by the appearance of leucine-independent intragenic recombinants. Mutant isolation was based on the recovery of thermally induced defects in recombination. The temperature-sensitive characteristic was included to allow eventual characterizations of the temporal period during meiosis when each gene performs its essential function. Following mutagenesis with either ethyl methane sulfonate or nitrosoguanidine individual clones were tested at 34° and 24° for acetate-induced recombination. Starting with 2700 clones, derived from cells that survived mutagenic treatment, we isolated 48 strains with thermally induced lesions in recombination. In the majority of mutants premeiotic replication occurred normally, or nearly normally, at the restrictive temperature, indicating that the meiotic cycle was initiated and that there was a defect in an event required for intragenic recombination. We also detected mutants where the thermally induced lesion in recombination resulted from temperature-sensitive premeiotic DNA synthesis.

Documentos Relacionados