Synthesis, in vitro Antimalarial Activity and in silico Studies of Hybrid Kauranoid 1,2,3-Triazoles Derived from Naturally Occurring Diterpenes


J. Braz. Chem. Soc.




We herein report the synthesis of hybrid kauranoid molecules of type 1,2,3-triazole-1,4-disubstituted aiming to improve the antimalarial activity of kaurenoic and xylopic acids. The CuI-catalyzed cycloaddition of azides and kauranoid terminal alkynes was explored as a hybridization strategy. Kauranoid terminal alkynes were prepared from kaurenoic and xylopic acids that were isolated from Wedelia paludosa D. C. (Asteraceae) and Xylopia frutescens Aubl. (Annonaceae). A total of 15 kauranoid derivatives, including nine new triazoles, were obtained and five out of these were more active than the original diterpenes. Interestingly, an increased activity was observed for a kauranoid propargyl ether. Interaction between ent-kaurane diterpene derivatives and Ca2+-ATPase (PfATP6) was investigated. Synthesis of diterpene derivatives emerges as a possible route to be explored in the quest of potentially new inhibitors of PfATP6.

Documentos Relacionados