Synthesis, conformation and enzymatic properties of 1-(beta-D-allofuranosyl)uracil and some derivatives.

AUTOR(ES)
RESUMO

A new route for the synthesis of 1-(beta-D-allofuranosyl)uracil ("allo-uridine") and the corresponding 6'-deoxy-derivative ("6'-deoxy-allo-uridine") as well as for 1-(beta-D-altrofuranosyl) uracil ("altro-uridine") is described. NMR studies of allo-uridine revealed a preferred conformation with the base in anti-position, C-2'-endo-pucker of the sugar moiety, the 5'-OH-group above the furanose ring and the 5'-CH2OH-group in a gt position with the OH-group in the plane of the furanose ring. The same conformation is found for the 5'- and 6'-phosphate, indicated by the influence of the phosphate group on the H-6 signal. Allo-uridine is phosphorylated by the phosphotransferases from carrot and from malt sprouts only in the 6'-position. The phosphate ester is hydrolysed by unspecific phosphatases but not by 5'-nucleotidase. A (3' leads to 6')-dinucleoside phosphate is formed by pancreatic ribonuclease with 2',3'-cyclic cytidylic acid and allo-uridine. It is split by nuclease S1, but not by snake-venom phosphodiesterase. It has no primer activity for polynucleotide phosphorylase. All-uridine 6'-diphosphate could not be prepared enzymatically by nucleotide kinase or by chemical methods, where 5',6'-cyclic phosphates are formed, which are hydrolysed exclusively to 6'-monophosphates.

Documentos Relacionados