Survival of lux-lac-marked biosurfactant-producing Pseudomonas aeruginosa UG2L in soil monitored by nonselective plating and PCR.

AUTOR(ES)
RESUMO

Two reporter systems, lacZY and luxAB, were stably integrated into the chromosome of Pseudomonas aeruginosa UG2, a biosurfactant-producing strain. Growth and rhamnolipid production of the UG2 wild-type and reporter gene-bearing UG2L strains were similar in liquid culture. A spontaneous rifampin-resistant detecting UG2Lr, allowed antibiotic selection. Phenotypic characteristics were compared for usefulness in detecting UG2Lr colonies: morphology, fluorescent pigment production, light emission (lux), X-Gal (5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside) cleavage (lac), and rifampin resistance. Survival patterns of UG2, UG2L, and UG2Lr strains were similar in sandy loam soil microcosms over 12 12 weeks. The lac marker was not suitable for monitoring P. aeruginosa UG2Lr in soil since 20 to 42% of cultured, aerobic, heterotrophic soil microorganisms formed blue, lactose-positive colonies. The lux genes provided a stable and unequivocal reporter system, as effective as conventional antibiotic plating, for tracking microorganisms nonselectively at 10(3) CFU/g of soil. Three months after inoculation into oil-contaminated and uncontaminated soil microcosms, UG2Lr cells were recovered at 10(7) and 10(4) cells per g (dry weight) of soil, respectively. Detection by PCR amplification of part of the luxA gene confirmed a decrease in UG2Lr cell numbers in uncontaminated soil. In combination, antibiotic resistance, bioluminescence, and PCR analyses provided sensitive detection and quantitative enumeration of P. aeruginosa UG2Lr in soil.

Documentos Relacionados