Sulfolobus acidocaldarius synthesizes UMP via a standard de novo pathway: results of biochemical-genetic study.

AUTOR(ES)
RESUMO

A genetic approach was used to establish the route of UMP biosynthesis in Sulfolobus acidocaldarius, a member of the hyperthermophilic division (the Crenarchaeota) of the Archaea domain. Pyrimidine auxotrophs of S. acidocaldarius DG6 were isolated by direct selection and by brute-force methods. Enzymatic assay of extracts from wild-type S. acidocaldarius, from pyrimidine auxotrophs, and from phenotypic revertants demonstrated that S. acidocaldarius synthesizes UMP via orotate in six enzymatic steps corresponding to the de novo pathway of other organisms. The results also show that a single carbamoyl phosphate synthetase supplies both the pyrimidine and arginine pathways of this organism. To gain similar insight into pyrimidine salvage pathway(s), prototrophic mutants resistant to toxic pyrimidine analogs were also isolated and characterized. The results suggest that a single class of mutants which had acquired elevated resistance to four different 5-fluoropyrimidines had been isolated. These fluoropyrimidine-resistant mutants appear to have a regulatory defect leading to overproduction of one or more endogenous pyrimidine compounds.

Documentos Relacionados