Successful Transmission of Three Mouse-Adapted Scrapie Strains to Murine Neuroblastoma Cell Lines Overexpressing Wild-Type Mouse Prion Protein

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

Propagation of the agents responsible for transmissible spongiform encephalopathies (TSEs) in cultured cells has been achieved for only a few cell lines. To establish efficient and versatile models for transmission, we developed neuroblastoma cell lines overexpressing type A mouse prion protein, MoPrPC-A, and then tested the susceptibility of the cells to several different mouse-adapted scrapie strains. The transfected cell clones expressed up to sixfold-higher levels of PrPC than the untransfected cells. Even after 30 passages, we were able to detect an abnormal proteinase K-resistant form of prion protein, PrPSc, in the agent-inoculated PrP-overexpressing cells, while no PrPSc was detectable in the untransfected cells after 3 passages. Production of PrPSc in these cells was also higher and more stable than that seen in scrapie-infected neuroblastoma cells (ScN2a). The transfected cells were susceptible to PrPSc-A strains Chandler, 139A, and 22L but not to PrPSc-B strains 87V and 22A. We further demonstrate the successful transmission of PrPSc from infected cells to other uninfected cells. Our results corroborate the hypothesis that the successful transmission of agents ex vivo depends on both expression levels of host PrPC and the sequence of PrPSc. This new ex vivo transmission model will facilitate research into the mechanism of host-agent interactions, such as the species barrier and strain diversity, and provides a basis for the development of highly susceptible cell lines that could be used in diagnostic and therapeutic approaches to the TSEs.

Documentos Relacionados