Subgingival microbiota in squirrel monkeys with naturally occurring periodontal diseases.

AUTOR(ES)
RESUMO

The squirrel monkey (Saimiri sciureus) has been proposed as an in vivo model for the study of subgingival colonization by suspected periodontopathogens, such as black-pigmented porphyromonads and prevotellas (BP/P). However, the indigenous microbiota of the squirrel monkey has not been well described. Therefore, in order to more fully characterize the oral microbiota of these animals, we studied two groups of squirrel monkeys from widely different sources. Group I consisted of 50 breeding colony monkeys ranging in age from 9 months to over 6 years which had been raised in captivity; group II consisted of 16 young sexually mature monkeys recently captured in the wild in Guyana. Group I animals in captivity had developed moderate to severe gingivitis, with a mean gingival index (GI) of 2.6; 52% of the sites bled, 26% had detectable calculus, and 83% had detectable BP/P. A group I subset (six animals), for which predominant cultivable microbiota was described, had a mean GI of 2.4. Colony morphology enumeration revealed that five of the six subset animals were detectably colonized with BP/P (range, 0 to 16.9%) and Actinobacillus actinomycetemcomitans (range, 0 to 3.9%); all subset animals were colonized with Fusobacterium species (range, 0.8 to 3.6%), Actinomyces species (range, 2.3 to 11%), and gram-positive cocci (range, 1.4 to 21.4%). Predominant cultivable microbiota results revealed the presence of many bacterial species commonly found in the human gingival sulcus. At baseline, group II animals were clinically healthy and had a mean GI of 1.4; 67% of the sites bled and 2.1% had calculus, and none of the animals had detectable BP/P. Neisseriae were very common in noninflamed sites. Subsequently, when inflamed sites were compared with noninflamed sites in group II animals after they had been maintained in captivity for 6 months, inflamed sites exhibited a more complex microbiota and increased proportions of gram-negative rods and asaccharolytic bacteria.

Documentos Relacionados