Study of the Ti-6Al-4V/TiO2 interface by scannig electron microscopy. / Estudo da interface Ti-6Al-4V/TiO2 por microscopia eletrônica de varredura.

AUTOR(ES)
DATA DE PUBLICAÇÃO

2000

RESUMO

Ti-6Al-4V alloy has been used with some success as biomaterial with applications in the field of dentistry and orthopaedics. The features with make the Ti-6Al-4V alloy such an interesting material are its good corrosion resistance in the biological environment, combined with an excellent degree of biocompatibility. The long-term biological effects of the slowly leaching of metal ions from titanium implants are not completely understood. It is known that the titanium ions are considered chemical carcinogen, aluminium ions cause neurological disorders and, vanadium ions are associated with irreversible enzymatic disturbance, among other problems. Titanium oxide (TiO2) coatings on titanium alloys can act as a chemical barrier for ions leaching from the metallic alloy surface, beside the fact that this oxide is a very good osteoinductor. The thermal spray process is widely used to apply oxide coatings. Once this is a high temperature process where molten or semi-molten particles impinge upon the substrate, localized diffusion can occur. The aim of this study is characterize the inter-diffusion of the alloying elements through the surface layers of the system Ti-6Al-4V/TiO2. The TiO2 coatings were prepared by the plasma spray technique. The coated zone showed some porous distributed in all layer and a few radial cracks. Additionally, large amount of holes were observed in the interlayer region. In this work, the interface Ti-6Al-4V/TiO2 was studied by scanning electron microscopy. Diffusion profiles of Ti, Al, V and O in the surface layers of coated samples were measured by semi-quantitative energy dispersive X-ray microanalysis. Chemical surface characterization of the substrate side after the TiO2 deposition showed the localized formation of TiO. At the interlayer region was observed the characteristic S shape diffusion profiles for Ti, V and O. The Al diffusion profile showed a peak in the interlayer region indicating anaccumulation of Al2O3 into the holes present in this zone. TiO2 was identified as the major component in the coating side. Small amounts of Al and V were also detected homogeneously distributed inside the deposit. Presence of Al and V (toxic metals) on the external surface of the deposit indicated that these metals did not compete with the oxidation of the deposited layer indicating a non-masking effect of metallic alloy surface by the TiO2- surface oxide.

ASSUNTO(S)

ti-6al-4v espectrometria dispersica de raio-x thermal spray plasm energy dispersive x-ray microscopia eletrônica de varredura tio2 scannig electron microscopy biomaterial revestimento plasma spray

Documentos Relacionados