Strutural characterization of hypothetical proteins complex - XACb0032/XACb0033 from Xanthomonas axonopodis pv. citri / Caracterização estrutural do complexo de proteinas hipoteticas - XACb0032/XACb0033 da bacteria Xanthomonas axonopodis pv. citri

AUTOR(ES)
DATA DE PUBLICAÇÃO

2007

RESUMO

Xanthomonas axonopodis pv. citri (Xac) is the causative agent of citrus canker, a disease of significant economic importance worldwide. The molecular bases of the virulence mechanism are still unknown, but is believed that transfer of bacterial virulence proteins directly into the host cell cytoplasm is mediated by protein secretion systems, mainly type III and hypotheticaly type IV. The target of our study was XACb0032. This protein, in two hibrid system, interacted with XACb0033, a protein previously annoted as a possible cytoplasmatic chaperone of type four secretion system (TFSS). Both proteins are hypothetic and encoded by virB locus on pXAC64 plasmid. Structural studies were initiated by pET23a cloning; followed by expression tests with Escherichia coli strands BL21(DE3)pLysS and RP. The XACb0032 RP-expression was successful, however, the protein was insoluble. This problem was solved with its co-expression with XACb0033. After two purification steps, the pure protein complex has been analysed by following spectroscopic methods: circular dichroism (CD), fluorescence emission (static and dinamic), nuclear magnetic ressonance (NMR) and small angle X-ray scattering (SAXS). Our results indicate that the complex shows a folded structure and that after ADP addition, a drastic change occured in the complex size and shape, that might indicate complex breaking upon ADP production in cell. Based on these observations, we can provide the following model for TFSS pathway concerning these proteins: 1. The chaperone (XACb0033) binds to the XACb0032 to keep it in a semiunfolded conformation; 2. This complex binds with ATP; 3. ATP bound to complex docks onto the TFSS apparatus and ATPase hydrolysis ATP; 4. ADP is formed and its presence provides that XACb0032 protein dissociates from complex; 5. The XACb0032 could be able to pass through the needle into the eukaryotic cell

ASSUNTO(S)

sistema secretorio tipo iv strutural characterization xanthomonas axonopodis pv. citri purification purificação caracterização estrutural xanthomonas axonopodis pv. citri type four secretion system

Documentos Relacionados