Strategy for Systematic Assembly of Large RNA and DNA Genomes: Transmissible Gastroenteritis Virus Model

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

A systematic method was developed to assemble functional full-length genomes of large RNA and DNA viruses. Coronaviruses contain the largest single-stranded positive-polarity RNA genome in nature. The ∼30-kb genome, coupled with regions of genomic instability, has hindered the development of a full-length infectious cDNA construct. We have assembled a full-length infectious construct of transmissible gastroenteritis virus (TGEV), an important pathogen in swine. Using a novel approach, six adjoining cDNA subclones that span the entire TGEV genome were isolated. Each clone was engineered with unique flanking interconnecting junctions which determine a precise systematic assembly with only the adjacent cDNA subclones, resulting in an intact TGEV cDNA construct of ∼28.5 kb in length. Transcripts derived from the full-length TGEV construct were infectious, and progeny virions were serially passaged in permissive host cells. Viral antigen production and subgenomic mRNA synthesis were evident during infection and throughout passage. Plaque-purified virus derived from the infectious construct replicated efficiently and displayed similar plaque morphology in permissive host cells. Host range phenotypes of the molecularly cloned and wild-type viruses were similar in cells of swine and feline origin. The recombinant viruses were sequenced across the unique interconnecting junctions, conclusively demonstrating the marker mutations and restriction sites that were engineered into the component clones. Full-length infectious constructs of TGEV will permit the precise genetic modification of the coronavirus genome. The method that we have designed to generate an infectious cDNA construct of TGEV could theoretically be used to precisely reconstruct microbial or eukaryotic genomes approaching several million base pairs in length.

Documentos Relacionados