Steady-state coupling of four membrane systems in mitochondrial oxidative phosphorylation.

AUTOR(ES)
RESUMO

According to Alexandre, Reynafarje, and Lehninger, four different membrane systems are involved, with definite stoichiometry, in the mitochondrial synthesis of ATP by electron transport, via proton transport. We adopt this model and pursue some of its thermodynamic consequences. At steady state, each of the four systems must have the same flux J through the membrane and the overall thermodynamic force X for oxidative phosphorylation is the sum of the four separate forces. From these properties, using an empirical linear flux-force relation for each system, it is easy to obtain J as a function of X. In turn, X depends on the inside [NAD+]/[NADH] and the outside [ATP]/[ADP][Pi] quotients (and on the pH inside). Thus, J is related to these quotients. The relationship we derive is similar to that described by Erecińska and Wilson, as deduced from a quite different model of oxidative phosphorylation. Proton transport is involved explicitly in three of the four systems of the present model. However, because of the steady-state stoichiometric coupling of the four systems, proton transport does not appear in the overall reaction. On the other hand, Erecińska and Wilson use, in their model, a direct connection between electron transport and ATP synthesis. The present paper demonstrates that J can be related to the quotients mentioned above without this direct connection.

Documentos Relacionados