Stabilization of tetanus and diphtheria toxoids against moisture-induced aggregation.

AUTOR(ES)
RESUMO

The progress toward single-dose vaccines has been limited by the poor solid-state stability of vaccine antigens within controlled-release polymers, such as poly(lactide-co-glycolide). For example, herein we report that lyophilized tetanus toxoid aggregates during incubation at 37 degrees C and elevated humidity--i.e., conditions relevant to its release from such systems. The mechanism and extent of this aggregation are dependent on the moisture level in the solid protein, with maximum aggregation observed at intermediate moisture contents. The main aggregation pathway is consistent with formaldehyde-mediated cross-linking, where reactive electrophiles created and stored in the vaccine upon formalinization (exposure to formaldehyde during vaccine preparation) react with nucleophiles of a second vaccine molecule to form intermolecular cross-links. This process is inhibited by the following: (i) succinylating the vaccine to block reactive amino groups; (ii) treating the vaccine with sodium cyanoborohydride, which presumably reduces Schiff bases and some other electrophiles created upon formalinization; and (iii) addition of low-molecular-weight excipients, particularly sorbitol. The moisture-induced aggregation of another formalinized vaccine, diphtheria toxoid, is also retarded by succinylation, suggesting the generality of this mechanism for formalinized vaccines. Hence, mechanistic stability studies of the type described herein may be important for the development of effective single-dose vaccines.

Documentos Relacionados