Somatic and Meiotic Chromosomal Recombination between Inverted Duplications in Transgenic Tobacco Plants.

AUTOR(ES)
RESUMO

Homologous recombination has been extensively studied in bacteria, yeast, and more recently in animal cells, but little is known about this process in plants. We present here an analysis of meiotic and somatic chromosomal recombination between closely linked inverted duplications located on a single chromosomal region in tobacco. Transgenic tobacco lines were constructed by Agrobacterium transformation with plasmid vectors containing a functional hygromycin phosphotransferase (hyg) selectable marker flanked by a pair of defective neomycin phosphotransferase (neo) genes positioned as inverted repeats. As each neo gene is mutated in a different site, recombination between the two defective genes can be detected following selection for kanamycin-resistant plant cells. The recombination substrates were designed to allow investigation into the nature of molecular events underlying homologous recombination by restriction endonuclease analysis. Chromosomal recombination was studied in mitotically dividing cells (cultured leaf mesophyll cells) and after meiosis (germinated seedlings). Spontaneous somatic recombinants were recovered at frequencies between ~3 x 10-5 to 10-6 events per cell. Low dose [gamma] irradiation of somatic cells resulted in a threefold maximum increase in the recovery of recombinants. Recombinants were also detected at low frequency when transgenic T3 seeds were germinated under kanamycin selection. DNA gel blot analyses demonstrated that homologous recombination occurred mainly as gene conversion unassociated with reciprocal exchange, although a variety of other events including gene coconversion were also observed.

Documentos Relacionados