Solventless photocurable film coating: Evaluation of drug release, mechanical strength, and photostability

AUTOR(ES)
FONTE

Springer-Verlag

RESUMO

A new solventless photocurable film-coating system was investigated in which nonpareil beads were coated in a minicoating pan with liquid prepolymer (L) and powdered solid pore-forming agents (S) and cured by UV light. Release from the coating could by altered by changing the material, the number of layers, and the coating thickness. Immediate release of a blue dye contained in the nonpareils was obtained with sodium starch glycolate as a pore former that swelled the coating and yielded large pores; through these pores the dye quickly released while leaving behind the scaffold provided by the photocured prepolymer. Simple pore formers (lactose and sodium chloride) dissolved away without swelling and provided a more sustained release. The nature of the scaffold and pore structure of the coating were determined by simultaneously monitoring the release of sodium chloride from the coating and blue dye from the beads. At least 50% of the sodium chloride that was incorporated into the coating released before the dye released through the coating, except at an S/L ratio (ratio of the amount of solid pore-forming agent to the volume of liquid prepolymer) of 2.4, where 40% of the sodium chloride was released before the release of dye. The coupling between dye release and pore formation was found to be dependent on the S/L ratio of the coating. Simulation based on percolation theory showed that the coupling of pore formation and dye release was higher when the variance in tortuosity was lower. The coating was photostable and could withstand normal handling stress.

Documentos Relacionados