Soluções superluminais equações de onda relativisticas e a relatividade especial

AUTOR(ES)
DATA DE PUBLICAÇÃO

1999

RESUMO

In the last years, two types of superluminal wave motion have been predicted theoretically and verified experimentally: (i) superluminal group velocities, observed in the propagation of electromagnetic waves in dispersive media, in the tunneling of electrons and microwaves and in the propagation of microwaves in the air; (ii) superluminal motion of finite energy approximations to superluminal solutions of Maxwell equations. In this work we try to clear up the meaning of such phenomena and their implications for Special Relativity. We write down the theories of Maxwell and Dirac in the Clifford bundle formalism, expressing with it the main wave equations of physics. From a set of solutions of the homogeneous wave equation we construct, with this formalism, corresponding solutions for the Maxwell, Klein-Gordon and Dirac equations. We then present the theory of characteristics, in order to understand the classical results of Sommerfeld and Brillouin about the propagation of waves in dispersive media. We thus can show that the recently observed superluminal velocities are a consequence of the phenomenon of pulse reshaping, and thus do not violate the Principle of Relativity. We formulate this principle rigorously in chapter 9, and we show that the existence of superluminal eletromagnetic configurations imply in its violation

ASSUNTO(S)

equação de onda solitons relatividade (fisica)

Documentos Relacionados