SOIL CHEMICAL CHANGES AND RESEMBLANCES IN A CHRONOSEQUENCE RAINFOREST-SUGARCANE-PASTURELAND IN THE ATLANTIC FOREST BIOME

AUTOR(ES)
FONTE

CERNE

DATA DE PUBLICAÇÃO

2020-12

RESUMO

ABSTRACT This study evaluated soil chemical and isotopic changes in soils of a chronosequence rainforest-sugarcane-pasture in the Atlantic Forest biome, Brazil. Soil samples were collected (0-20 cm) in areas of native Brazilian Atlantic rainforest, sugarcane plantation and pastures of Brachiaria decumbens. The soil analyses performed were: pH (water 1:2.5), P (Mehlich-I), (Al+3, H+Al, K+, Ca+2, Mg+2 and Na+), soil organic matter (SOM), N, organic carbon and δ13C and δ15N stable isotopes. The conversion of rainforest to sugarcane and pastures resulted in a reduction of the soil natural acidity. Forest areas had greater Al+3 and H+Al concentrations than cultivated areas. The conversion from forest to agricultural soil reduced Al+3 (44%) and H+Al (11%), approximately. Soils from pasture had a greater percentage of base saturation (37.3%) than forest soils (25.4%). Cation exchange capacity was strongly influenced by concentrations of K+, Ca+2 and Mg+2, but not by Na+. Carbon stable isotope (δ13C) was more depleted in forest areas (-28.14‰), followed by sugarcane (-21.33‰), and pastures (-19.54‰). The greatest δ15N values were found in sugarcane areas. The short chronosequence studied, had a strong influence of the conversion of the forest on the decrease of the natural acidity and modifications of the isotopic profile. The enrichment of soil δ13C was attributed to the changes from predominant C3 vegetation to C4 grasses.

Documentos Relacionados