Social regulation of the brain-pituitary-gonadal axis.

AUTOR(ES)
RESUMO

Reproduction in vertebrates is regulated by the hypothalamic-pituitary-gonadal axis via neural and hormonal feedback. This axis is also subject to exogenous influences, particularly social signals. In the African cichlid fish Haplochromis burtoni, gonadal development in males is socially regulated. A small fraction of the males, which are brightly colored, maintain territories and aggressively dominate inconspicuously colored nonterritorial males. Here we show through manipulation of the social and endocrine environment that changes in social status and gonadal state are accompanied by soma size changes in a population of gonadotropin-releasing hormone-containing neurons in the ventral forebrain. In territorial males, these cells are significantly larger than in nonterritorial males. When an animal switches from being territorial to nonterritorial through a change in social situation, these cells shrink; in animals that change from nonterritorial to territorial status, the cells enlarge. These gonadotropin-releasing hormone-containing cells project to the pituitary and are ultimately responsible for regulating gonadal growth. This mechanism of socially induced cell size change provides the potential for relatively quick adaptive changes in the neuron-endocrine system without nerve cell addition or death. Since the structure of this regulatory axis is conserved among all vertebrates, other species with socially modulated reproductive physiology may exhibit a similar form of physiological regulation.

Documentos Relacionados