Sistemas químicos integrados via complexos de rênio(I) e rutênio(II) na conversão de energia / Chemical integrated systems via rhenium and ruthenium complexes on energy conversion

AUTOR(ES)
DATA DE PUBLICAÇÃO

2007

RESUMO

The focus of this work is on two chemical integrated systems: dye-sensitized solar cells, Dye-Cells®, and photosensors based on rhenium(I) compounds. Novel ruthenium(II) compounds were synthesized, characterized and investigated as dye-sensitizers. The results of solar cells sensitized by cis-[(H3BCN)2Ru(dcbH2)2], H3BCN- = cyanoborohydride, dcbH2 = acid-4,4-dicarboxylic-2,2-bipyridine, are: Jsc = 8.0 mA.cm-2, Voc = 0.66 V, Pmax = 2.7 mA.cm-2 and ff = 0.51. Incident photon-to-current efficiency of up to 23% is achieved by this device. The cis-[Ru(dobH2)2(L)2]0/2+ compounds, dobH2 = acid-4,4-dihydroxamic-2,2-bipyridine, L = Cl-, H2O or NCS-, were synthesized using hydroxamic acid as a new anchoring group. The performance of these dye-sensitized solar cells are: cis-[(Cl)2Ru(dobH2)2]: Jsc = 4.6 mA.cm-2, Voc = 0.60 V, Pmax = 1.4 mW.cm-2, ff = 0.51; cis-[Ru(dobH2)2(H2O)2]2+: Jsc = 4.4 mA.cm-2, Voc = 0.61 V, Pmax = 1.6 mW.cm-2, ff = 0.59; cis-[(SCN)2Ru(dobH2)2]: Jsc = 4.6 mA.cm-2, Voc = 0.71 V, Pmax = 1.5 mW.cm-2, ff = 0.46. The similarity between Jsc values suggests that the anchoring group is limiting the electron injection into the semiconductor conducting band. Anthocyanins of several fruits were employed as sensitizers. These natural dyes are capable of adsorbing onto the semiconductor surface and promote the light-to-electricity conversion. Incident photon-to-current efficiency of up to 19% and values Jsc = 7.2 mA.cm-2, Voc = 0.65 V, Pmax = 2.0 mW.cm-2, ff = 0.55 were determined. The second chemical integrated system investigated is based on photosensors using fac-[Re(CO)3(NN)(stpy)]+, NN = 2,2-bipyridine, bpy, 4,4-dimethyl-2,2-bipyridine, Me2 bpy, or dipyrido[3,2-a:2,3-c]phenazine, dppz, stpy = trans or cis-4-styrylpyridine. The trans-cis isomerization of the coordinated ligand is followed by two distinct ways, spectrophotometry and nuclear magnetic resonance, 1H NMR. The apparent quantum yields, fiap, determined for irradiation at 404 nm by spectrophotometry are: fac-[Re(CO)3(bpy)(trans-stpy)]+ Φap = 0.19 ± 0.02; fac-[Re(CO)3(Me2bpy)(trans-stpy)]+ Φap = 0.18 ± 0.02; fac-[Re(CO)3(dppz)(trans-stpy)]+ Φap = 0.30 ± 0.03. The real values, Φreal, determined by 1H NMR, are: fac-[Re(CO)3(bpy)(trans-stpy)]+ Φreal = 0.48 ± 0.03; fac-[Re(CO)3(Me2bpy)(trans-stpy)]+ Φreal = 0.31 ± 0.07; fac-[Re(CO)3(dppz)(trans-stpy)]+ Φreal = 0.48 ± 0.06. The values determined by 1H NMR are real since the signals of the product and of the reactant are detected in distinct regions, which does not occur for the spectrophotometric method. The trans-cis isomerization of the compound fac-[Re(CO)3(bpy)(trans-stpy)]+ is also observed in poly(methyl)methacrilate, which was the rigid medium employed aiming the development of devices. The fac-[Re(CO)3(bpy)(cis-stpy)]+ isomer is luminescent and its emission is investigated in different media analyzing the hypsochromic shifts increasing the rigidity of the medium.

ASSUNTO(S)

photosensors células solares fotossensores conservação de energia dispositivos moleculares energy conversion molecular devices renewable energy solar cells energias renováveis

Documentos Relacionados