SIMULATION OF THERMAL DECOMPOSITION IN AN OPEN CAVITY: ENTROPY ANALYSIS

AUTOR(ES)
FONTE

Braz. J. Chem. Eng.

DATA DE PUBLICAÇÃO

15/07/2019

RESUMO

ABSTRACT This paper presents a numerical analysis of entropy generation in a two-dimensional rectangular channel where the inlet flow undergoes thermal decomposition resulting from a chemical reaction. The model considered viscosity and thermal conductivity to be dependent of temperature. Irreversibility due to mass transport was included in the entropy generation analysis. Relevant applications of this study are possible for the design of power generation systems and reactors. The effects of the Reynolds number, Schmidt number, and length of the heat source on thermal fluid dynamics, mass transfer, and irreversibility were also investigated. It was found that thermal decomposition increases at: a) low Reynolds numbers, b) low Schmidt numbers, and c) increased length of heat source. Additionally, overall entropy generation increased when Reynolds number and length of heat source were increased, although in all cases, overall irreversibility attains a minimum value at a specific Schmidt number.

Documentos Relacionados