Simulation of integrin-cytoskeletal interactions in migrating fibroblasts.

AUTOR(ES)
RESUMO

Cell migration is a dynamic phenomenon requiring a physical interaction between the internal cell motile machinery and the external substratum in which adhesion receptors, such as integrins, serve as the transmembrane link. To analyze quantitatively this interaction, we apply a modified Brownian dynamics algorithm to simulate cytoskeleton-mediated transport of integrin on the dorsal surfaces of migrating fibroblasts. Previously, we experimentally demonstrated that integrin is transported in an intermittent fashion, with directed excursions interspersed by diffusive periods, preferentially toward the cell edge where the integrin is likely used in the formation of nascent adhesions. Integrins containing mutations in the cytoskeleton-binding region of the cytoplasmic domain display statistically different degrees of directed transport, indicating that this phenomenon is dependent on cytoskeletal associations. In the present work, we develop a computer algorithm generating simulated integrin transport trajectories, given estimates for the rate constants defining coupling (kc) and uncoupling (ku) of integrin with cytoskeletal components. Other parameters supplied to the program, the diffusion coefficient (D) for integrin in the membrane and the instantaneous velocity (vi) of the integrin/cytoskeleton complex, have been measured independently in our experimental system. By comparing the simulated trajectories with those obtained experimentally, we are able to estimate the coupling and uncoupling rate constants for the interaction of integrin with cytoskeletal elements in vivo. We find that integrin couples with cytoskeletal elements at a rate approximately 10 times slower than its rate of uncoupling (kc = 0.3 s-1, ku = 3 s-1). Comparison of these rate constants with an equivalent rate constant for diffusion, k+ = 0.4 s-1, indicates that the coupling interaction is likely a diffusion-limited process, as is typically expected for membrane processes. We further show by calculation that directed transport is necessary for integrin to traverse the length of an extending lamellipod to its leading edge; diffusion alone is not sufficiently fast to supply adhesion receptors to points of new cell/substratum contact.

Documentos Relacionados