Shear Strengthening of RC Deep Beams with Sprayed Fiber-reinforced Polymer Composites (SFRP): Part 2 Finite Element Analysis

AUTOR(ES)
FONTE

Lat. Am. j. solids struct.

DATA DE PUBLICAÇÃO

2015-07

RESUMO

AbstractThis paper presents the finite element analysis conducted on SFRP strengthened reinforced concrete (RC) deep beams. The analysis variables included SFRP material (glass and carbon), SFRP thickness (3 mm and 5 mm), SFRP configuration and strength of concrete. The externally applied SFRP technique is significantly effective to enhance the ultimate load carrying capacity of RC deep beams. In the finite element analysis, realistic material constitutive laws were utilized which were capable of accounting for the non-linear behavior of materials. The finite element analysis was performed using computer software WCOMD. In the analysis, two dimensional eight-node reinforced concrete planar elements for concrete and planar elements with elastic-brittle behavior for SFRP were used to simulate the physical models. The concept of smeared cracking in concrete and steel was adopted over the element. The calculated finite element results are found to be in good agreement with the experimental results and to capture the structural response of both un-strengthened and SFRP strengthened RC deep beams. A comparison between the finite element results and experimental data proved the validity of the finite element models. Further, the finite element models were utilized to investigate the behavior of RC deep beams strengthened with different directions of SFRP Strips (vertical and horizontal). The vertical SFRP strips are found to be more effective than horizontal ones.

Documentos Relacionados