Sequence-specific interaction of Hoechst 33258 with the minor groove of an adenine-tract DNA duplex studied in solution by 1H NMR spectroscopy.

AUTOR(ES)
RESUMO

The interaction of Hoechst 33258 with the minor groove of the adenine-tract DNA duplex d(CTTTTGCAAAAG)2 has been studied in both D2O and H2O solutions by 1D and 2D 1H NMR spectroscopy. Thirty-one nuclear Overhauser effects between drug and nucleotide protons within the minor groove of the duplex, together with ring-current induced perturbations to the chemical shifts of basepair and deoxyribose protons, define the position and orientation of the bound dye molecules. Two drug molecules bind cooperatively and in symmetry related orientations at the centre of the 5'-TTTT and 5'-AAAA sequences with the binding interactions spanning only the four A-T basepairs. The positively charged N-methylpiperazine moieties point towards the centre of the duplex while the phenol groups are disposed towards the 3'-ends of the sequence. Resonance averaging is apparent for both the D2/D6 and D3/D5 phenol protons and D2"'/D6"' and D3"'/D5"' of the N-methylpiperazine ring and is consistent with these groups being involved in rapid rotation or ring-flipping motions in the bound state. Interstrand NOEs between adenine H2s and deoxyribose H1' are consistent with a high degree of propeller twisting of the A-T basepairs at the binding site of the aromatic benzimidazole and phenol rings of Hoechst. The data imply that the minor groove is particularly narrow with many contacts between the complementary curved surfaces of the drug and DNA indicating that strong van der Waals interactions, involving the floor and the walls of the minor groove, stabilize the complex. In our model the NH groups of the benzimidazole rings are positioned to make a pair of bifurcated hydrogen bonds with the adenine N3 and thymine O2 on the floor of the minor groove.

Documentos Relacionados