Selection in Plant Populations of Effectively Infinite Size. V. Biallelic Models of Trioecy

AUTOR(ES)
RESUMO

A one-locus two-allele model of trioecy (presence of hermaphrodites, males and females in one population) is considered, in order to study the conditions for the persistence of this system. All possible assignments of the three sex types to the three genotypes are considered. This leads to three different modes of inheritance of trioecy, namely (a) females heterozygous, (b) males heterozygous and (c) hermaphrodites heterozygous, where in each mode each of the remaining two sex types is homozygous for one of the alleles. For mode (c) trioecy is always persistent, and the dependence of the sex ratio (for the three sex types) on the ovule and pollen fertilities and on the hermaphrodite selfing rate is specified. For the other two modes, (a) and (b), trioecy is not protected, i.e., it may not persist for any fertilities, viabilities or selfing rates. Thus, in this situation it is important to study the conditions under which the "marginal" systems of sexuality of trioecy, i.e., hermaphroditism, dioecy and gynodioecy in mode (a), and hermaphroditism, dioecy and androdioecy in mode (b), may become established. The results show that each marginal system may evolve from each other via trioecy. The evolution of dioecy is easier in mode (a) than in (b), so that female heterogamety would be expected to occur more often than male heterogamety in the present model. Under some conditions the breeding system obtained in equilibrium populations may depend on the initial genotype frequencies.—The necessity of considering modes of inheritance for sexual polymorphisms is demonstrated by comparing our results with those obtained from an evolutionary stable strategy (ESS) analysis of a purely phenotypic model.

Documentos Relacionados