Scaffolds baseados em nanopartículas de fosfatos de cálcio para engenharia tecidual óssea / Scaffolds based on calcium phosphate nanoparticles for bone tissue engineering

AUTOR(ES)
FONTE

IBICT - Instituto Brasileiro de Informação em Ciência e Tecnologia

DATA DE PUBLICAÇÃO

13/07/2012

RESUMO

Tissue engineering associated with nanotechnology stood out because of its multidisciplinarity and results, in addition to targeting many areas of study in the field of regenerative medicine. For the process of bone regeneration to occur in appropriate form, the injured area must be organized. The reorganization of the 3D structure in the affected area should be studied in order to create scaffolds of appropriate size and shape similar to the existing defect. The implanted scaffold should be evaluated regarding the interaction of the material with the cells on the damaged region. From this principle, the objective of this work was to synthesize nanoparticles of hydroxyapatite (HA) and tricalcium phosphate ( beta -TCP) using the new sucrosebased route which is based on the use of sucrose as a chelating agent for synthesis of nanoparticles, which are used in the production of scaffolds, forming composite HA / TCP that will be used as support for mesenchymal stem cells (MSC) in the replacement tests of bone tissue. The nanoparticles were characterized by XRD, XRF, Scherrer equation, SEM, TEM, EELS, ESEM, NTA, FTIR and Zeta potential. With two calcium phosphates (HA and TCP) it was prepared two types of composites (ceramic sponge and porous ceramic cylinder), which were characterized by mechanical test, XRD, pycnometry, X-ray microtomography (Micro-CT) ESEM, FTIR and degradation test. Scaffolds were tested in vivo and in vitro and they were characterized by magnifying fluorescence, confocal microscopy, SEM, EDS, radiography, MTT and histology. The results suggest that the scaffolds obtained can be used to improve the osteogenic differentiation of the MSC providing the development of new types of bone tissue engineering.

ASSUNTO(S)

hidroxiapatita processo sol-gel compósito nanotecnologia celulas-tronco mesenquimais hydroxyapatite sol-gel process composite nanotechnology mesenchymal stem cells

Documentos Relacionados