Role of the chymotrypsin-like membrane-associated proteinase from Treponema denticola ATCC 35405 in inactivation of bioactive peptides.

AUTOR(ES)
RESUMO

The ability of washed whole cells of Treponema denticola ATCC 35405 to hydrolyze (inactivate) substance P, bradykinin, and angiotensin I was studied. Substance P was attacked primarily at the Phe-8-Gly-9 bond by a chymotrypsin-like proteinase (CTLP), at Pro-4-Gln-5 by an endo-acting prolyl oligopeptidase (POPase), and at Gln-5-Gln-6 by an endopeptidase (FALGPA-peptidase). Bradykinin was cleaved at Phe-5-Ser-6 by the FALGPA-peptidase and at Pro-7-Phe-8 by the POPase. Angiotensin I was rapidly converted to angiotensin II by the CTLP, and both angiotensin I and angiotensin II were further hydrolyzed at Pro-7-Phe-8 by the POPase. All these enzymes were assumed to be cell associated and were easily extracted with a mild (0.05 to 0.1%) Triton X-100 treatment. Because it was conceivable that the hydrolysis of substance P at the Phe-8-Gly-9 bond was catalyzed by a CTLP described earlier (V.-J. Uitto, D. Grenier, E. C. S. Chan, and B. C. McBride, Infect. Immun. 56:2717-2722, 1988), the enzyme was purified to homogeneity by means of conventional fast protein liquid chromatography procedures. For kinetic studies, Phe-8(4-nitro)-substance P (NSP) (absorption maximum at 309.2 nm, epsilon = 545 M-1 cm-1) was synthesized to replace substance P as a substrate in kinetic studies. In reversed-phase chromatography, both NSP and substance P gave identical results with both whole cells and the purified enzyme. The CTLP has a mass of 95 kDa, and its activity is suggested to be based on an active seryl residue, on an active imidazole group, and on an active carboxyl group but not on metal cations. The enzyme hydrolyzes N-succinyl-L-Ala-L-Ala-L-Pro-L-Phe-p-nitroaniline (SAAPFNA, a typical chymotrypsin substrate) at a high rate and several proteins, such as calf thymus histone, human plasma fibrinogen, milk caseins, and gelatin. Among the substrates tested, substance P showed the highest affinity (Km = 0.22 mM) for the purified enzyme. Depending on conditions, clinically applicable chlorhexidine levels (3.2 mmol/liter, or 0.2%) strongly activated (up to fourfold) the hydrolysis of SAAPFNA by whole cells and the purified CTLP. The hydrolysis of NSP by whole cells and purified CTLP was slightly inhibited by chlorhexidine. The results demonstrated the versatility and the effectiveness of the outer membrane of T. denticola in occasioning a rapid breakdown and inactivation of human bioactive peptides and other peptidolytic catalyses.(ABSTRACT TRUNCATED AT 400 WORDS)

Documentos Relacionados