RNA molecules containing exons originating from different members of the cytochrome P450 2C gene subfamily (CYP2C) in human epidermis and liver.

AUTOR(ES)
RESUMO

Reverse transcription-PCR analysis in human epidermis, using primers from CYP2C18 and CYP2C19, revealed products containing combinations between canonically defined exons of these two genes. The major RNA species identified contained 2C18 exon 8 spliced with 2C19 exon 2. However, the terminal exons 1 and 9 were never detected in any of these composite molecules. When similar experiments were performed with liver RNA, exons 1 and 9 of both 2C18 and 2C19 were readily identified in composite 2C18/2C19 RNAs. Moreover, molecules containing 2C9 sequences spliced with 2C18 exons were also detected. These findings suggest that during the process of RNA splicing of the 2C transcripts, various exon juxtaposition events may occur, including combinations between exons of distinct genes. However, the frequency of these events is quite low and the levels of the composite RNA molecules are generally estimated at less than one molecule per cell. Since the order of these genes on chromosome 10q24 is CYP2C18 - CYP2C19 - CYP2C9, it is conceivable that the composite RNAs may result from multiple canonical and inverse splicing events of a long pre-mRNA that encompasses the three genes. However, these molecules could also be rationalized as being the products of trans splicing phenomena between distinct pre-mRNAs.

Documentos Relacionados