Ricinosomes and endosperm transfer cell structure in programmed cell death of the nucellus during Ricinus seed development

AUTOR(ES)
FONTE

National Academy of Sciences

RESUMO

The ricinosome (precursor protease vesicle) is an organelle found exclusively in plant cells. Ricinosomes contain a 45-kDa pro-cysteine endopeptidase (CysEP) with a C-terminal KDEL endoplasmic reticulum retention signal. CysEP is a member of a unique group of papain-type cysteine peptidases found specifically in senescing and ricinosome-containing tissues. During seed development in the castor oil plant (Ricinus communis L.), the cells of the nucellus are killed as the major seed storage organ, the cellular endosperm, expands and begins to accumulate reserves. The destruction of the maternal seed tissues is a developmentally programmed cell death. Terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling revealed that nuclear DNA fragmentation occurs in the nucellar cells adjacent to the expanding endosperm. These cells exhibit ultrastructural features consistent with programmed cell death, including vesiculation of the cytosol, development of irregularly shaped nuclei, vacuolar collapse, and shrinkage of the cytoplasm. Ricinosomes containing the CysEP were identified in the nucellar cells by light and electron microscopy and immunocytochemistry. Both proCysEP and mature CysEP are present in protein extracts of the nucellar tissues during seed development. Upon collapse of the nucellar cells, the content of the ricinosomes is released into the cytoplasm, where the activated CysEP digests the remaining proteinaceous cellular debris. Digestion products of the nucellar cells are presumed taken up by the outermost cells of the endosperm, which have labyrinthine ingrowths of the outer walls typical of transfer cells.

Documentos Relacionados