Reproductive systems and evolution in vascular plants

AUTOR(ES)
FONTE

The National Academy of Sciences

RESUMO

Differences in the frequency with which offspring are produced asexually, through self-fertilization and through sexual outcrossing, are a predominant influence on the genetic structure of plant populations. Selfers and asexuals have fewer genotypes within populations than outcrossers with similar allele frequencies, and more genetic diversity in selfers and asexuals is a result of differences among populations than in sexual outcrossers. As a result of reduced levels of diversity, selfers and asexuals may be less able to respond adaptively to changing environments, and because genotypes are not mixed across family lineages, their populations may accumulate deleterious mutations more rapidly. Such differences suggest that selfing and asexual lineages may be evolutionarily short-lived and could explain why they often seem to be of recent origin. Nonetheless, the origin and maintenance of different reproductive modes must be linked to individual-level properties of survival and reproduction. Sexual outcrossers suffer from a cost of outcrossing that arises because they do not contribute to selfed or asexual progeny, whereas selfers and asexuals may contribute to outcrossed progeny. Selfing and asexual reproduction also may allow reproduction when circumstances reduce opportunities for a union of gametes produced by different individuals, a phenomenon known as reproductive assurance. Both the cost of outcrossing and reproductive assurance lead to an over-representation of selfers and asexuals in newly formed progeny, and unless sexual outcrossers are more likely to survive and reproduce, they eventually will be displaced from populations in which a selfing or asexual variant arises.

Documentos Relacionados