Remoção de carbono e nitrogênio em reator de leito móvel submetido à aeração intermitente / Nitrogen and carbon removal in moving bed reactor operated under intermittent aeration

AUTOR(ES)
DATA DE PUBLICAÇÃO

2008

RESUMO

The operating conditions for the combined removal of nitrogen and organic matter in moving- bed biological reactor were investigated. Two bench-scale reactors, two liters each, were operated under intermittent aeration and continuously fed with synthetic wastewater containing ammonia nitrogen (90 to 110 mg/L) and molasses as organic carbon source (COD of 450 to 550 mg/L). Each reactor received different moving-bed materials: polyurethane foam matrices and plastic rings, respectively. During the first experimental period, the reactor containing plastic rings maintained very low nitrogen removal efficiencies during large period. For this reason, the moving-bed was replaced by polyurethane foam matrices and the reactor was re-inoculated with aerobic wastewater plant sludge. Thereafter, the two reactors were similar except for the origin, age and characteristics of the inoculum sludge. First, the wastewater micronutrients were just those contained in the carbon source (molasses). After, the synthetic wastewater composition was changed by adding a solution of micronutrients. This procedure was adopted to achieve a stable nitrification process, because commercial molasses is a very poor regarding its micronutrient composition. As a result of the stable conditions prevalence just after adding micronutrients, organic matter (as COD) removal efficiencies were higher than 85% and complete nitrogen ammonia oxidation was achieved. In nitrogen removal efficiencies were approximately 55%. The performance of the reactors improved after the increase of the anoxic period from1h to 1h15min, and reduction of the hydraulic detention time to less than 12 h. The results obtained in the last operating period indicated the optimum operating conditions was not achieved in this experiment, thus opening the possibility of process improvement in further researches. Microbial populations with different characteristics were developed in suspended growth and attached biomass. Nitrification and denitrification bacteria predominated as attached biomass whereas heterotrophic bacteria predominated as suspended growth biomass.

ASSUNTO(S)

espuma de poliuretano melaço intermittent aeration reator de leito móvel remoção simultânea de carbono e nitrogênio simultaneous removal of nitrogen and carbon moving-bed reactor polyurethane foam aeração intermitente molasses

Documentos Relacionados