Relationship between receptor/ligand binding affinity and adhesion strength.

AUTOR(ES)
RESUMO

Receptor-mediated cell adhesion is a central phenomenon in many physiological and biotechnological processes. Mechanical strength of adhesion is generally presumed to be related to chemical affinity of receptor/ligand bonds, but no experimental study has been previously directed toward this issue. Here we investigate the dependence of receptor/ligand adhesion strength on bond affinity using a radial fluid flow chamber assay to measure the force needed to detach polystyrene beads covalently coated with immunoglobulin G from glass surfaces covalently coated with protein A. A spectrum of animal species sources for immunoglobulin G permits examination of three decades of protein A/immunoglobulin G binding affinity. Our results for this model system demonstrate that adhesion strength varies with the logarithm of the binding affinity, consistent with a prediction from the theoretical model by Dembo et al. (Dembo, M., D.C. Torney, K. Saxman, and D. Hammer. 1988. Proc. R. Soc. Lond. Ser. B 234:55-83).

Documentos Relacionados