Regulation of Thymidine Metabolism in Escherichia coli K-12: Evidence That at Least Two Operons Control the Degradation of Thymidine

AUTOR(ES)
RESUMO

In Escherichia coli K-12, the rise in activity of thymidine phosphorylase, phosphodeoxyribomutase, and deoxyribose-5-phosphate aldolase caused by exogenous thymidine is dependent on the synthesis of new enzyme protein. Phosphodeoxyribomutase is induced by the purine ribonucleosides adenosine and guanosine, whereas the other two enzymes are not. The mutase activity induced by thymidine and by the purine ribonucleosides has been shown to be the same enzyme by four different criteria. This independent induction of phosphodeoxyribomutase suggests that the gene for this enzyme is in an operon different from the one that may contain the genes for thymidine phosphorylase and deoxyribose-5-phosphate aldolase.

Documentos Relacionados