recA protein-catalyzed strand assimilation: stimulation by Escherichia coli single-stranded DNA-binding protein.

AUTOR(ES)
RESUMO

The single-stranded DNA-binding protein of Escherichia coli significantly alters the strand assimilation reaction catalyzed by recA protein [McEntee, K., Weinstock, G. M. & Lehman, I. R. (1979) Proc. Natl. Acad. Sci. USA 76, 2615--2619]. The binding protein (i) increases the rate and extent of strand assimilation into homologous duplex DNA, (ii) enhances the formation of a complex between recA protein and duplex DNA in the presence of homologous or heterologous single-stranded DNA, (iii) reduces the rate and extent of ATP hydrolysis catalyzed by recA protein in the presence of single-stranded DNA, (iv) reduces the high concentration of recA protein required for strand assimilation, and (v) permits detection of strand assimilation in the presence of the ATP analog, adenosine 5'-O-(O-thiotriphosphate). Single-stranded DNA-binding protein purified from a binding protein mutant (lexC) is considerably less effective than wild-type binding protein in stimulating strand assimilation, a result which suggests that single-stranded DNA-binding protein participates in general recombination in vivo.

Documentos Relacionados