Real-time fluorescence measurement of cell-free endosome fusion: regulation by second messengers.

AUTOR(ES)
RESUMO

A quantitative real-time assay of cell-free endosomal vesicle fusion was developed and applied to study fusion mechanisms in endosomes from baby hamster kidney (BHK-21) cells. The assay is based on an irreversible approximately 10-fold increase in BODIPY-avidin fluorescence on binding of biotinylated conjugates. BODIPY-avidin and biotin-dextran were internalized for 10 min at 37 degrees C into separate populations of BHK-21 cells, and endosome fractions were prepared. Postnuclear supernatant fractions underwent ATP- and temperature-dependent fusion, as measured in a sensitive custom-built microfluorimeter by the continuous increase in BODIPY-avidin fluorescence. Fusion processes of efficiency > 2.5% could be detected with 200-ms time resolution in sample volumes of 50 microL containing endosomes derived from approximately 4 x 10(4) cells. The fusion time course consisted of a distinct lag phase (up to 10 min) in which little fusion occurred, followed by an approximately exponential rise (t 1/2 10-30 min; fusion efficiency approximately 15%). The lag phase was reduced by preincubation of separate endosome fractions with ATP at 37 degrees C and by coincubation of endosomes at 22 degrees C before the assay, suggesting a rate-limiting step involving binding of a soluble protein to the endosome membrane. Endosome fusion was strongly inhibited by GTP gamma S, N-ethylmaleimide, and AIF4-. Endosome fusion was not affected by phorbol myristate acetate but was significantly inhibited by cAMP and bovine brain calmodulin. The results establish a sensitive real-time fluorescence assay to quantify the kinetics and extent of endosome fusion in a cell-free system and demonstrate regulation of early endosome fusion by cytosolic second messengers.

Documentos Relacionados