Reaction kinetic model of a proposed plasma membrane two-cycle H(+)-transport system of Chara corallina.

AUTOR(ES)
RESUMO

Biophysical and numerical analysis methods were used to characterize and model the transport protein that gives rise to the acid and alkaline regions of Chara. A measuring system that permits the detection of area-specific current-voltage curves was used. These current-voltage curves, obtained from the inward current regions of Chara, underwent a parallel shift when the alkaline region was inverted by means of an acid pH treatment. In this situation the reversal potential of this area shifted from -120 mV to -340 mV. Together with data obtained from experiments using a divided chamber system, these results suggest that a common transport protein generates inward and outward current regions of Chara. On the basis of these experimental findings, a reaction kinetic model is proposed that assigns two operational modes to the proposed transport protein. Switching between these modes generates either acid or alkaline behavior. Since the observed pH dependence of the postulated transporter is rather complex, a reaction kinetic saturation mechanism had to be incorporated into the model. This final 10-state reaction kinetic model provides an appropriate set of mathematical relations to fit the measured current-voltage curves by computer.

Documentos Relacionados