Rapid kinetics of insertion and accessibility of spin-labeled phospholipid analogs in lipid membranes: a stopped-flow electron paramagnetic resonance approach.

AUTOR(ES)
RESUMO

Spin-labeled phospholipid analogs have been employed to probe the transbilayer distribution of endogenous phospholipids in various membrane systems. To determine the transmembrane distribution of the spin-labeled analogs, the analogs are usually inserted into the membrane of interest and subsequently the amount of analog in the outer membrane leaflet is determined either by chemical reduction with ascorbate or by back-exchange to bovine serum albumin (BSA). For accurate determination of the transbilayer distribution of analogs, both the kinetics of incorporation and those of accessibility of analogs to ascorbate or BSA have to be fast in comparison to their transbilayer movement. By means of stopped-flow electron paramagnetic resonance (EPR) spectroscopy, we have studied the kinetics of incorporation of the spin-labeled phosphatidylcholine (PC) analog 1-palmitoyl-2-(4-doxylpentanoyl)-sn-glycero-3-phosphocholine (SL-PC) and of its accessibility to chemical reduction and to back-exchange at room temperature. Incorporation of SL-PC into the outer leaflet of egg phosphatidylcholine (EPC) and red cell ghost membranes was essentially completed within 5 s. Ninety percent of the SL-PC molecules located in the outer membrane leaflet of those membranes were extracted by BSA within 15 s. All exterior-facing SL-PC molecules were reduced by ascorbate in a pseudo-first-order reaction within 60 s in EPC membranes and within 90 s in red cell ghost membranes. The rate of the reduction process could be enhanced by approximately 30-fold when 6-O-phenyl-ascorbic acid was used instead of ascorbate as the reducing agent. The results are discussed in light of assaying rapid transbilayer movement of spin-labeled analogs in biological membranes.

Documentos Relacionados