Propriedades eletrÃnicas e de transporte de nanoestruturas de carbono. / Electronic and transport properties of carbon nanostructures

AUTOR(ES)
FONTE

IBICT - Instituto Brasileiro de Informação em Ciência e Tecnologia

DATA DE PUBLICAÇÃO

20/12/2011

RESUMO

à medida que o limite de miniaturizaÃÃo da eletrÃnica baseada no silÃcio aproxima-se do seu limite, alternativas em estado sÃlido devem ser investigadas na busca da diminuiÃÃo da escala de tamanho de dispositivos operacionais, ao mesmo tempo em que se deve considerar problemas de crescente interessse como dissipaÃÃo de calor e ruÃdo associado com a baixa dimensionalidade. Nesta busca, jà està claro que nanosistemas semicondutores de carbono sÃo candidatos de primeiro pelotÃo para comporem os blocos bÃsicos para dispositivos em escala atÃmica e molecular. Grafeno e nanotubos de carbono sÃo os sistemas mais estudados desta classe de estruturas que se estende por uma vasta coleÃÃo de sistemas. Estas nanoestruturas de carbono apresentam uma riqueza de propriedades fÃsicas e quÃmicas que se reflete no enorme nÃmero de artigos cientÃficos tendo esses sistemas como foco. Apesar de a ciÃncia das nanoestruturas de carbono ainda ter um longo caminho pela frente antes de alcanÃar as prateleiras das lojas depois de ter sido transformada em tecnologia, a comunidade cientÃfica tem caminhado rapidamente no sentido de entender e controlar tais sistemas de modo a diminuir esta distÃncia. Nesta tese nÃs realizamos um estudo teÃrico das propriedades eletrÃnicas e de transporte de um nÃmero de nanoestruturas de carbono, tais como nanosistemas toroidais e nanofitas de carbono de arranjo complexo. Nossos cÃlculos de estrutura eletrÃnica sÃo baseados em um modelo tight-binding que inclui um Hamiltoniano de Hubbard para descrever a influÃncia do spin sobre os estados eletrÃnicos. As propriedades de transporte eletrÃnico foram calculadas utilizando o formalismo de Landauer e o mÃtodo de funÃÃes de Green para determinar a transmitÃncia quÃntica em sistemas em nanoescala. Parte destes cÃlculos foram realizados com pacotes computacionais desenvolvidos especialmente para esta tese. Em particular, nÃs desenvolvemos uma extensÃo de um algorÃtmo eficiente para o cÃlculo de funÃÃo de Green em uma infraestrutura computacional em paralelo. Nanotoroides de carbono apresentam estrutura eletrÃnica especÃfica se comparados aos nanotubos de carbono, jà que sua geometria impÃe um grau suplementar de confinamento espacial. Como consequÃncia, condiÃÃes adicionais devem ser impostas à sua geometria para que a estrutura seja metÃlica. Aqui nos analizamos nanotoroides de carbono a partir de duas perspectivas diferentes: sistemas de dois terminais com um Ãngulo variÃvel entre os eletrodos e estruturas de mÃltiplos terminais. Esses sistemas possuem potencial para serem aplicados em nanoeletrÃnica graÃas à sua geometria particular que permite que a corrente flua atravÃs do sistema por diferentes caminhos eletrÃnicos. Isso resulta em propriedades de transporte interessantes, as quais sÃo ditadas por efeitos de interferÃncia eletrÃnica que variam com o Ãngulo entre os eletrodos e com os detalhes da estrutura atÃmica da junÃÃo nanotoroide-terminal. NÃs mostramos que a presenÃa de mÃltiplos terminais acrescenta novos aspectos ao transporte eletrÃnico destes toroides jà que o nÃmero de possibilidades para o fluxo eletrÃnico cresce rapidamente com o nÃmero de eletrodos. Observa-se que a condutÃncia à caracterizada por um conjunto de picos resonantes que sÃo relacionados com caminhos eletrÃnicos especÃficos. Estes resultados sÃo racionalizados em termos de uma sÃrie de regras para se determinar o caminho para a corrente elÃtrica como uma funÃÃo da energia do elÃtron incidente. Na segunda parte da tese, nÃs estudamos as propriedades fÃsicas de uma classe de fitas de carbono as quais nÃs chamamos de fitas sinuosas (ou simplesmente wiggles, em inglÃs). A estrutura atÃmica destas wiggles pode ser descrita por um conjunto reduzido de fatores jà que elas podem ser construÃdas utilizando-se fitas de carbono de borda reta como blocos bÃsicos. NÃs mostramos que essas wiggles de carbono apresentam um conjunto de propriedades eletrÃnicas e magnÃticas ainda mais amplo quando comparadas com os seus constituintes bÃsicos (fitas de carbono de borda reta). Isso à especialmente devido à formaÃÃo de domÃnios nas bordas, resultantes da sucessiva repetiÃÃo de setores de fitas retas paralelas e obliquas ao longo da direÃÃo periÃdica da wiggle. NÃs demonstramos que as wiggles de carbono apresentam mÃltiplos estados magnÃticos que podem ser explorados para se manipular as propriedades fÃsicas desses sistemas. Estes diferentes estados magnÃticos resultam em propriedades eletrÃnicas e de transporte distintas, de modo que a corrente eletrÃnica pode ser controlada pela escolha de valores especÃficos da energia do elÃtron incidente no sistema, assim do spin eletrÃnico e do estado magnÃtico da wiggle. Essas propriedades tornam as nanowiggles potenciais candidatas para novas aplicaÃÃes em nanodispositivos. Finalmente, nos esperamos que o trabalho apresentado nesta tese constitua uma importante contribuiÃÃo para a investigaÃÃo das propriedades fÃsicas de nanoestruturas de carbono. NÃs mostramos que nanotoroides e nanowiggles de carbono apresentam uma sÃrie de novas propriedades que podem tornar possÃvel o seu uso em nanoeletrÃnica. à medida que estudos experimentais em nanomateriais de carbono tÃm sido desenvolvidos a passos largos, nÃs projetamos que os resultados apresentados nesta tese se tornarÃo uma Ãtima oportunidade para se confrontar teoria e experimento na proposta de novos dispositivos em nanoescala com propriedades eletrÃnicas e de transporte especÃficas.

ASSUNTO(S)

fisica atomica e molecular estrutura eletrÃnica nanoestruturas carbono electronic structure nanostructures carbon funÃÃes de green

Documentos Relacionados